

Physics at a New Fermilab Proton Driver

- 1. Introduction & Parameters
- 2. Physics Study
- 3. Event Rates
- 4. Neutrino Oscillation Physics Reach
- 5. Other Physics
- 6. Summary

Introduction

The recent (2004) APS study on the future of neutrino physics concluded with some recommendations, amongst which: "We recommend, as a high priority, a comprehensive U.S. program to complete our understanding of neutrino mixing, to determine the character of the neutrino mass spectrum, and to search for CP violation among neutrinos."

The program to do this should have as one of its components: "A proton driver in the megawatt class or above and neutrino superbeam with an appropriate very large detector capable of observing CP violation and measuring the neutrino mass-squared differences and mixing parameters with high precision."

Neutrino physics provides the primary motivation for upgrading the intensity of the Fermilab Proton Source.

Proposed Fermilab 8 GeV Proton Driver

Parameters	Present	Proton Driver
Linac (Pulse Freq.)	5 Hz	10 Hz
Kinetic Energy	400 MeV	8 GeV
Peak current	40 mA	28 mA
Pulse length	25 µs	1 ms
Booster (cycles at 15 Hz)		
Extraction Kinetic Energy	8 GeV	
Protons per cycle	5×10^{12}	
Protons per hour	9×10^{16} (5 Hz)	
8 GeV Beam Power	33 KW (5 Hz)	2 MW
Main Injector (120 GeV)		
Protons per cycle	3×10^{13}	1.5×10^{14}
Fill time	0.4 sec	0.1 sec
Ramp time	1.47 sec	1.4 sec
Cycle time	1.87 sec	1.5 sec
Protons per hour	5.8×10^{16}	3.5×10^{17}

Proton Source Parameters

Present MI Beam Power = 0.3 MW

With Proton Driver MI Beam Power → 2 MW

Steve Geer

NO-VE 06

New Fermilab Proton Driver

Since the MI injection time << cycle time, most of the 2 MW 8 GeV (initially 0.5 MW) Linac beam available for an additional program.

Proton Driver Physics Study

In Spring 2004 the Fermilab Directorate initiated a study to explore the physics potential of a new Fermilab Proton Driver.

What (particle) physics can be done with 2 MW Main Injector proton beam ? What (particle) physics could be done with a 0.5 - 2 MW 8 GeV proton beam ?

The study included a workshop at Fermilab in October 2004, and produced a written report in 2005.

Web Page: http://protondriver.fnal.gov/

Proton Driver Physics Study Working Groups and Conveners

WG1: Neutrino Oscillations
D. Harris (FNAL), S. Brice (FNAL), W. Winter (Princeton)
WG2: Neutrino Interactions
J. Morfin (FNAL), R. Ransome (Rutgers), R. Tayloe (Indiana)
WG3: Muons
R. Ray (FNAL), R. Roberts (BU)
WG4: Kaons and Pions
H. Nguyen (FNAL), T. Yamanaka (Osaka U.)
WG5: Antiprotons
D. Christian (FNAL), M. Mandelkern (UCI)
WG6: Tevatron Collider
H. Cheung (FNAL), Penny Kasper (FNAL), P. Ratoff (Lancaster U.)
WG7 Neutrons
T. Bowles (LANL), G. Greene (ORNL)

Proton Driver Scientific Advisory Committee

Peter Meyers (Chair)	Princeton
Ed Blucher	Chicago
Gerhard Buchalla	Munich
John Dainton	UK
Yves Declais	Lyon
Lance Dixon	SLAC
Umberto Dosselli	INFN
Don Geesaman	ANL
Geoff Greene	ORNL
Taka Kondo	KEK
Marvin Marshak	Minnesota
Bill Molzon	UCI
Hitoshi Murayama	UC Berkley
James Siegrist	LBNL
Anthony Thomas	JLab
Taku Yamanaka	Osaka

- 1. Give emerging physics case a critical review
- Help us to reach out to a broad community as we develop a constituency excited by the Proton Driver Physics Program

Why Do We Need Higher Intensity Proton Beams?

We want to study rare processes. The upper limit on the all important $v_{\mu} \rightarrow v_{e}$ oscillation amplitude is ~5% !

NEED MW-CLASS MULTI-GeV PROTON SOURCES & DETECTORS of a FEW TIMES 10kt

Determining all of the Parameters will be Challenging

Expand in
$$\alpha = \Delta m_{21}^2 / \Delta m_{31}^2$$
 and $\sin^2 2\theta_{13}$ and keep first order terms

$$P(\nu_e \rightarrow \nu_\mu) \approx \sin^2 2\theta_{13} \sin^2 \theta_{23} \frac{\sin^2((1-\hat{A})\Delta)}{(1-\hat{A})^2}$$

$$\boxed{\underbrace{\nu}}_{\overline{\nu}} \pm \frac{\sin \delta_{CP} \ \alpha}{\sqrt{\nu}} \sin 2\theta_{12} \cos \theta_{13} \sin 2\theta_{13} \sin 2\theta_{23} \sin(\Delta) \frac{\sin(\hat{A}\Delta) \sin((1-\hat{A})\Delta)}{\hat{A}(1-\hat{A})}$$

$$+ \cos \delta_{CP} \alpha \sin 2\theta_{12} \cos \theta_{13} \sin 2\theta_{13} \sin 2\theta_{23} \cos(\Delta) \frac{\sin(\hat{A}\Delta) \sin((1-\hat{A})\Delta)}{\hat{A}(1-\hat{A})}$$

$$+ \alpha^2 \sin^2 2\theta_{12} \cos^2 \theta_{23} \frac{\sin^2(\hat{A}\Delta)}{\hat{A}^2}$$

NOTE:

 $\Delta = \Delta m_{31}^2 L/E$

Matter parameter A = $2\sqrt{2}G_F n_e E/\Delta m_{31}^2$

For $v \rightarrow anti-v$, $A \rightarrow -A$, AND the sign of A depends on the sign of Δm_{32}^2

	$\sin^2 2\theta$	$_{13} = 0.1$	$\sin^2 2\theta_1$	$_{3} = 0.01$
Expt	Signal	Backgr	Signal	Backgr
MINOS	49.1	108	6.7	109
ICARUS	31.8	69.1	4.5	70.3
OPERA	11.2	28.3	1.6	28.6
Т2К	132	22.7	16.9	23.5
NOvA	186	19.7	23.0	20.7
NOvA+FPD	716	75.6	88.6	79.5
NuFact nu	29752	44.9	4071	44.9
NuFact nubar	7737	82.0	1116	82.0

Calculations of W. Winter

Normal Hierarchy, $\delta =$

 \bigcirc

ain 220

_ 0 1

			$5111 \ 20_{13} - 0.1$				
		Noi	rmal	Inv			
nter	Expt	$\delta = 0$	$\delta = \pi/2$	$\delta = 0$	$\delta = \pi/2$	Backgr	
. Wir	<i>T2K</i>	132	96	102	83	24	
of W	NOvA	186	138	111	85	21	
tions	NOvA+FPD	716	531	430	326	80	
lcula	NuFact nu	29752	27449	13060	17562	45	
Ca	NuFact nubar	7737	5942	9336	10251	82	

Ability to observe non-zero θ_{13} versus time

NO-VE 06

From Searches to Measurements

Although we don't know the magnitude of θ_{13} we have no good reason to suspect it is very small.

Hence at any point along the future path our focus on searching for a non-zero of θ_{13} might be changed to a focus on measuring its value precisely, determining the mass hierarchy, and searching for CP violation.

The Fermilab Proton Driver has critical roles to play in both the search and the measurement phases of the global program.

Determining the Mass Hierarchy

Steve Geer

NO-VE 06

Feb 7-10, 2006

15

Searching for CP Violation

Steve Geer

NO-VE 06

Further Studies

The 2nd generation Fermilab Proton Driver long baseline neutrino Experiments (beyond NOvA) studied to date are "representative", not optimized.

A follow-on study is now beginning to look in more detail at the Superbeam experiment possibilities at Fermilab beyond NOvA.

Meeting at Fermilab March 6-7

Longer Term Possibilities – a Neutrino Factory

The 8 GeV Linac could eventually be used to drive a Neutrino Factory.

MARS simulations yield 0.2 muons/p ...momenta O(100 MeV/c), occupying large transverse phase space

 \rightarrow 3×10²¹ muons per year (10⁷ secs)

Neutrino Factory Reach

The full physics program (Establishing the magnitude of θ_{13} , determining the mass hierarchy, & searching for CPV) can be accomplished if $\sin^2 2\theta_{13} > O(10^{-4})$!

Note: As $\theta_{13} \rightarrow 0$, $P(\nu_e \rightarrow \nu_\mu) \rightarrow 0$. If $Sin^2 2\theta_{13} < O(10^{-4})$ a Neutrino Factory will make the first observation of $\nu_e \leftrightarrow \nu_\mu$ appearance & provide a very important test of three-flavor mixing.

Other Topics - Neutrino Scattering

High precision neutrino and antineutrino measurements with nuclear & nucleon targets are <u>needed for the oscillation physics program to reduce</u> <u>systematics</u> from cross-section uncertainties.

Neutrino scattering measurements are of interest in their own right:

CC QE Scattering \rightarrow Nucleon structure & binding of the nucleons within the nucleus

NC Elastic Scattering \rightarrow Spin structure of the nucleon & the strange quark contribution

Resonant & coherent production of pions \rightarrow Resonant structure of the nucleon & non-perturbative QCD tests

Strange Particle Production \rightarrow Understand backgrounds for proton decay searches

Neutrino-Electron Elastic Scattering \rightarrow Neutrino magnetic moment

Neutrino Scattering at the Proton Driver

In the pre-Proton Driver era we expect high precision <u>neutrino</u> measurements of CC & NC (quasi)elastic scattering, and CC & NC producion of pions and strange particles off <u>nuclear targets</u>.

However: (i) The antineutrino event rate is down by a factor of 3-5 (depending on energy) compared to the neutrino rate ... due to the cross-sections and the π +/ π - production ratio, and (ii) The H₂ & D₂ target rates are down by an order of magnitude compared to nuclear target rates.

We will need the Proton Driver to make high-precision measurements with antineutrino beams on nuclear targets, and with both neutrino and antineutrino beams on nucleon targets (H_2,D_2) , using both the MI beam and the 8 GeV beam – motivates high power (2 MW) at 8 GeV.

Intermediate Possibilities – a Muon Program

•Lepton Flavor Violation (LFV) has been established in the neutrino sector, suggesting new LFV processes at high mass scales. This physics might result in observable effects in the muon sector (?)

•Examples:

muon g-2 muon Electric Dipole Moment (\rightarrow new CP violation) $\mu^- \rightarrow e^-$ conversion $\mu \rightarrow e\gamma$ and $\mu \rightarrow eee$

•Beam rebunching at the present and future Fermilab proton source is being studied by those of us interested in possible $\mu \rightarrow e$ experiments in the near-term and at the Proton Driver.

Muon Physics - 1

Rare muon processes probe high mass scales:

Muon Physics - 2

In addition, precision muon experiments are sensitive to new physics at the TeV scale ... complementary to the LHC experiments. Examples: muon (g-2), Electric Dipole Moment, and LFV muon decays.

One Dream ...

One Dream ... to explore LFV

One Dream ... to explore LFV

One Dream ... to explore LFV

SUMMARY

A Proton Driver yielding 0.5MW (2MW) at MI energies would complement and facilitate critical contributions to the Global longbaseline neutrino program.

The NuMI beam is the longest-baseline beam in the World with the right energy range for significant matter effects!

Fermilab long-baseline neutrino vision: MINOS \rightarrow NOvA \rightarrow NOvA+FPD $\rightarrow 2^{nd}$ generation superbeam experiment (or Neutrino Factory).

The proton Driver could support a more diverse program, including Neutrino scattering measurements and a program of muon experiments.

BACKUP SLIDES

		$\sin^2 2\theta_{13} = 0.1$		$\sin^2 2\theta_1$	$_{3} = 0.01$
	Expt	Signal	Backgr	Signal	Backgr
	MINOS	31.3	108	2.3	109
inter	ICARUS	21.6	71.3	1.37	72.6
W. W	OPERA	7.60	28.7	0.48	29.0
IS of A	T2K	102	22.8	10.5	23.4
lation	NOvA	111	19.9	12.4	20.6
alcul	NOvA+FPD	430	76.7	47.6	79.2
\cup	NuFact nu	13060	44.7	773	44.7
	NuFact nubar	9336	81.6	652	81.6

Inverted Hierarchy, $\delta = 0$

		$\sin^2 2\theta_{13} = 0.1$		$\sin^2 2\theta_{13} = 0.0$	
	Expt	Signal	Backgr	Signal	Backgr
	MINOS	7.4	108	2.9	109
inter	ICARUS	25.7	69.1	2.5	70.3
W. W	OPERA	9.0	28.3	0.9	28.6
IS of 1	T2K	96.3	22.7	5.4	23.5
lation	NOvA	138	19.7	7.5	20.7
alcul	NOvA+FPD	531	75.6	28.9	79.5
\cup	NuFact nu	27449	44.9	3324	44.9
	NuFact nubar	5942	82.0	549	82.0

Normal Hierarchy, $\delta = \pi/2$

		$\sin^2 2\theta$	$_{13} = 0.1$	$\sin^2 2\theta_1$	$_{3} = 0.01$
	Expt	Signal	Backgr	Signal	Backgr
	MINOS	31.3	108	2.3	109
inter	ICARUS	24.9	71.3	2.4	72.6
W. W	OPERA	8.7	28.6	0.85	29.0
IS of 1	T2K	82.9	22.8	4.3	23.4
lation	NOvA	84.6	19.9	3.7	20.6
alcul	NOvA+FPD	326	76.6	14.4	79.2
\cup	NuFact nu	17562	44.7	2196	44.7
	NuFact nubar	10251	81.6	949	81.5

Inverted Hierarchy, $\delta = \pi/2$

Mass Hierarchy Evolution

g-2

The present BNL g-2 result shows a 2.7σ effect

Some minimal SUSY models \rightarrow large contributions to a_{μ} from loops with a chargino & muon sneutrino and loops with a neutralino & smuon. If SUSY discovered at LHC new a_{μ} measurements $\rightarrow \tan \beta$ & SUSY mixing.

EDM

Non-zero EDM would indicate new CP violation beyond the Standard Model. Present limit $d_{\mu} < 3.7 \times 10^{-19}$ e-cm constrains SUSY. If SUSY discovered at the LHC, $d_{\mu} \& a_{\mu}$ measurements \rightarrow information about the new CP-violating phases difficult to obtain any other way. JPARC proposal $\rightarrow 10^{-24}$ e-cm. To go further need better beam structure \rightarrow many short pulses, each separated by >500ms. Fermilab Proton Driver experiment might be designed to have a sensitivity $\sim 10^{-26}$ e-cm $\mu \rightarrow e\gamma$ In SUSY Seesaw models LFV depends on SUSY breaking. If SUSY observed at the LHC, LFV measurements \rightarrow information about SUSY breaking. Present limit BR < 1.2 × 10⁻¹¹. MEG experiment expected $\rightarrow \sim 10^{-14}$ Further progress requires improved muon source & better detector technology giving better background rejection (i.e. resolutions) & enabling higher rates. Improvement to $10^{-15} - 10^{-16}$ seems plausible.

 $\mu \rightarrow e \text{ conversion}$ MECO at BNL \rightarrow BR $\sim 10^{-17}$. JPARC proposal (PRISM/PRIME) \rightarrow BR $\sim 10^{-19}$. PRISM/PRIME could be located at the Fermilab Proton Driver if it does not find a home at JPARC.